Sato TR*, Itokazu T, Osaki H, Ohtake M, Yamamoto T, Sohya K, Maki T, Sato TK*. (2019)  Interhemispherically dynamic representation of an eye movement-related activity in mouse frontal cortex. Elife 8, doi:10.7554/eLife.50855.

Itokazu T, Hasegawa M, Kimura R, Osaki H, Albrecht UR, Sohya K, Chakrabarti S, Itoh H, Ito T, Sato TK*, Sato TR*. (2018) Streamlined sensory motor communication through cortical reciprocal connectivity in a visually guided eye movement task.  Nature Communications 9(1):338.

Hasegawa M, Majima K, Itokazu T, Maki T, Albrecht UR, Castner N, Izumo M, Sohya K, Sato TK, Kamitani Y, Sato TR*. (2017) Selective suppression of local circuits during movement preparation in mouse motor cortex.  Cell Rep. 18(11): 2676-2686.

Niethard N, Hasegawa M, Itokazu T, Oyanedel CN, Born J*, Sato TR*(2016) Sleep stage-specific regulation of cortical excitation and inhibition.  Curr Biol. 26 (20):2739-49.

Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS. (2014). Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant.  Elife. 04167.

Ji N, Sato TR, Betzig E. (2012).  Characterization and adaptive optical correction of aberrations during in vivo imaging in the mouse cortex. Proc Natl Acad Sci U S A. 109(1):22-7.

Sato TR*, Svoboda K.  (2010).  The functional properties of barrel cortex neurons projecting to the primary motor cortex.  Journal of Neuroscience 30(12): 4256-60

Komiyama K, Sato TR, O’Connor DH, Huber D, Hooks BM, Gabitto M, Svoboda K. (2010).  Learning-Related Fine-Scale Specificity Imaged in Motor Cortex Circuits of Behaving Mice.  Nature 464(7292): 1182-6

Zhong H, Sia GM, Sato TR, Gray NW, Mao T, Khuchua Z, Huganir RL, Svoboda K. (2009).  Subcellular dynamics of type II PKA in neurons.  Neuron 62(3): 363-74.

Sato TR*, Gray NW, Mainen ZF, Svoboda K. (2007).  The functional microstructure of the mouse barrel cortex.  PLoS Biology 5(7):e189.

Izumo M, Sato TR, Straume M, Johnson CH. (2006).  Quantitative analyses of circadian gene expression in mammalian cell cultures. PLoS Computational Biology 2(10): e136.

Thompson KG, Bisco KL, Sato TR. (2005).  Neuronal basis of covert spatial attention in the frontal eye field. Journal of Neuroscience 25(41): 9479-87.

Thompson KG, Bichot NP, Sato TR. (2005). Frontal eye field activity before visual search errors reveals the integration of bottom-up and top-down salience. Journal of Neurophysiology 93(1):337-51.

Schall JD, Sato TR, Thompson KG, Vaughn AA, Juan CH. (2004). Effects of search efficiency on surround suppression during visual selection in frontal eye field. Journal of Neurophysiology 91(6):2765-9.

Sato TR, Watanabe K, Thompson KG, Schall JD. (2003). Effect of target-distractor similarity on FEF visual selection in the absence of the target. Experimental Brain Research 151(3):356-63.

Sato TR, Schall JD. (2003). Effects of stimulus-response compatibility on neural selection in frontal eye field. Neuron 38(4):637-48.

Watanabe K, Sato TR, Shimojo S. (2003). Perceived shifts of flashed stimuli by visible and invisible object motion. Perception 32(5):545-9.

Sachdev RN, Sato T, Ebner FF. (2002). Divergent movement of adjacent whiskers. Journal of Neurophysiology 87(3):1440-8.

Sato T, Schall JD. (2001). Pre-excitatory pause in frontal eye field responses. Experimental Brain Research 139(1):53-8.

Sato T, Murthy A, Thompson KG, Schall JD. (2001). Search efficiency but not response interference affects visual selection in frontal eye field. Neuron 30(2):583-91.

Sato T, Tokuyama W, Miyashita Y, Okuno H. (1997). Temporal and spatial dissociation of expression patterns between Zif268 and c-Fos in rat inferior olive during vestibular compensation. Neuroreport 8(8):1891-5.